Pourquoi utilisons-nous les mathématiques complexes exponentielle comm creuser

W

Wajahat

Guest
Salut tout le monde, je veux savoir pourquoi on utilise les mathématiques complexes exponentielle cammunication numérique, mais nous ne transmettre que la partie réelle du signal. Nous récupérons la partie complexe à l'aide du transformateur de Hilbert au récepteur.

Une des raisons que j'ai découvert est qu'il simplifie les opérations Mousquetaires.
Y at-il une autre raison?
Toute réponse serait utile.

 
En utilisant la notation complexe pour les signaux permet de comprendre facilement et la mise en œuvre.Nous ne prenons la représentation mathématique de sorte qu'il contribue à la manipulation mathématique simple ...
Lorsque la mise en œuvre d'un émetteur, les composants I et Q (en phase = réel, Quadrature = imaginaire) sont en fait des cosinus (réel) et le sinus (imaginaire) des composants.Ils sont orthogonaux les uns aux autres et sont envoyés sur le même support.Mais peut-être facile à comprendre avec une représentation complexe.

 
l'annulation noice est plus facile additiion pour la facilité de mise en œuvre.Ainsi, BER est inférieur.

 
Il s'agit essentiellement, on peut facilement analyser les systèmes.Dans les régimes réels que nous avons à traiter en phase et en quadrature pièces séparement.Mais dans la représentation complexe que nous pouvons faire les opérations facilement sur la version combinée, le signal complexe.

L'autre avantage est que nous pouvons travailler sur des signaux en bande de base en évitant l'effet de la fréquence porteuse:

C'est ce qu'on appelle le modèle de bande de base complexe.

Janath

 
C'est pour la même raison, nous considérons à la fois positifs et négatifs des fréquences dans la transformée de Fourier tandis que les négatifs n'ont pas fait les calculs physiques meanning.It et les représentations des types beaucoup plus facile à comprendre et à utiliser.

 
Aussi, nous avons parfois besoin d'informations de phase, qui ne peut être dérivée en utilisant des moyens exponentielle.Ie réel et imaginaire, et quand vous transformer en notation polaire vous obtenez la phase et l'amplitude, par exemple lorsque vous effectuez des calculs spectre de puissance et quand on travaille avec des schémas de modulation numérique.

 
Dans le livre Meyr, il mentionner que:

Si nous utilisons Raël mathématiques, comme cos (wt), il ne compter qu'un espace signal dimension.

Si nous utilisons l'exponentielle des mathématiques complexes, comme cos (wt) et j * sin (wt), il représente les deux dimensions d'espace signal, alors nous pouvons transporter plus infirmation dans un intervalle de temps symbole.

 
Wajahat Cher,

Le nom du livre est: des récepteurs de DIGITAL
La synchronisation, l'estimation de canal, et traitement du signal

Auteur: Meyr Heinrich, Moeneclaey Marc, Stefan A. Fechtel

 

Welcome to EDABoard.com

Sponsor

Back
Top